Millifluidic synthesis of polymer core-shell micromechanical particles: Toward micromechanical resonators for acoustic metamaterials
نویسندگان
چکیده
منابع مشابه
High-frequency micromechanical columnar resonators.
High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient c...
متن کاملGallium nitride micromechanical resonators for IR detection
This paper reports on a novel technology for low-noise un-cooled detection of infrared (IR) radiation using a combination of piezoelectric, pyroelectric, electrostrictive, and resonant effects. The architecture consists of a parallel array of high-Q gallium nitride (GaN) micro-mechanical resonators coated with an IR absorbing nanocomposite. The nanocomposite absorber converts the IR energy into...
متن کاملMicromechanical Resonators for Oscillators and Filters
Fully monolithic, high-Q, micromechanical signal processors are described. A completely monolithic high-Q oscillator, fabricated via a combined CMOS plus surface micromachining technology, is detailed, for which the oscillation frequency is controlled by a polysilicon micromechanical resonator to achieve high stability. The operation and performance of μmechanical resonators are modelled, with ...
متن کاملFunctionalized Micromechanical Resonators with High Quality Factors
The dissipation of mechanical energy in 250-nm-thick, MHz-range silicon resonators is found to be strongly dependent on the chemical nature of the surface. As a result, sub-monolayer changes in the termination of 250-nm-thick resonators lead to significant changes in quality (Q) factor. The chemical origins of this effect are under investigation. Strategies for the formation of arbitrarily func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Polymer Science
سال: 2012
ISSN: 0021-8995
DOI: 10.1002/app.38411